
STRV
DATING APPS

Jozef Cipa, Backend Developer at STRV



2



TECHNICAL BACKGROUND
● iOS & Android

● Node.js & Typescript

● Runs on Heroku

● Data in AWS

○ RDS (Postgres)

○ S3

○ Cloudfront

○ 15TB of data combined

● Firebase

○ Chat & real-time data

○ Push notifications

3



● Originally Postgres database as a Heroku Addon

● Scaling 
○ Cannot configure RAM, CPU, storage
○ Becomes very expensive 💰💰💰

● Configuration
○ Postgres VACUUM not configured correctly
○ Wrongly designed indexes
○ Results in 300GB of size

CHALLENGE #1 - MIGRATING DATABASE

4

and it goes higher 😰

...



● Originally Postgres database as a Heroku Addon

● Scaling 
○ Cannot configure RAM, CPU, storage
○ Becomes very expensive 💰💰💰

● Configuration
○ Postgres VACUUM not configured correctly
○ Wrongly designed indexes
○ Results in 300GB of size (~80GB after fixing the issues)

CHALLENGE #1 - MIGRATING DATABASE

5

and it goes higher 😰

...



CHALLENGE #1 - MIGRATING DATABASE

6



Migrating to AWS RDS

● Better scaling options
● Reserved (prepaid) instance can save you up to 60% of cost

● Ideally via failover mechanism (add 2nd DB follower replica, promote as a new primary)
○ Not supported by Heroku 

● Manually via pg_dump + pg_restore 💪
○ Results in 20 minutes application downtime 😫

CHALLENGE #1 - MIGRATING DATABASE

7



● All data originally stored in Microsoft Azure
● Need to migrate it to AWS (legacy, pricing, “everything under one roof” reasons)
● Photos & chat files

Steps

1. Update the API to upload new files to AWS
2. Move all photos to AWS & update DB records
3. Move all chat media to AWS & update Firebase records

CHALLENGE #2 - MIGRATING ALL USER FILES

8



● Running on Heroku

○ ~700 user profiles / hour, est. completion time: ~8 months
❌ time

CHALLENGE #2 - MIGRATING ALL USER FILES

9



● Running on Heroku

○ ~700 user profiles / hour, est. completion time: ~8 months
❌ time

● Rewriting script to leverage Node.js cluster (with 3 parallel workers)

○ ~3 900 user profiles / hour, est. completion time: ~1.5 month
❌ resources, price

⚠ multiple workers orchestration, respawning crashed processes

CHALLENGE #2 - MIGRATING ALL USER FILES

10



● Running on Heroku

○ ~700 user profiles / hour, est. completion time: ~8 months
❌ time

● Rewriting script to leverage Node.js cluster (with 3 parallel workers)

○ ~3 900 user profiles / hour, est. completion time: ~1.5 month
❌ resources, price

⚠ multiple workers orchestration, respawning crashed processes

● Moving the script to AWS EC2 (with 6 parallel workers)

○ ~24 000 user profiles / hour, est. completion time: ~7 days

✅ resources, price, time

CHALLENGE #2 - MIGRATING ALL USER FILES

11



● Running on Heroku

○ ~700 user profiles / hour, est. completion time: ~8 months
❌ time

● Rewriting script to leverage Node.js cluster (with 3 parallel workers)

○ ~3 900 user profiles / hour, est. completion time: ~1.5 month
❌ resources, price

⚠ multiple workers orchestration, respawning crashed processes

● Moving the script to AWS EC2 (with 6 parallel workers)

○ ~24 000 user profiles / hour, est. completion time: ~7 days

✅ resources, price, time

CHALLENGE #2 - MIGRATING ALL USER FILES

12

for the rescue to all ⚠



● User registers => create a hash (5 hexadecimal characters)
● SQL procedure writing to tables and generating hash

Problem
● Some requests took 30s and got cut off by Heroku
● SQL queries stuck in Postgres (no timeouts configured)
● Out of hashes after 1M+ (16 ^ 5 = 1 048 576 unique combinations)

CHALLENGE #3 - DUPLICATE HASHES

13



● User registers => create a hash (5 hexadecimal characters)
● SQL procedure writing to tables and generating hash

Problem
● Some requests took 30s and got cut off by Heroku
● SQL queries stuck in Postgres (no timeouts configured)
● Out of hashes after 1M+ (16 ^ 5 = 1 048 576 unique combinations)

Solution
● Increase the hash length 󰤇 

CHALLENGE #3 - DUPLICATE HASHES

14



THANK YOU!
Jozef Cipa / @jozefcipa

15



QUESTIONS


