MIGRATING DATA
BETWEEN GLOUDS

QUICK INTRQ

e Surge - 4.5M+ registered users

e Grizzly - TM+ registered users

e Runs on Heroku, Postgres & Firebase
e Data originally stored in Azure (expensive &)
e Let's migrate to AWS
o Push notifications (moved to Firebase)
o Schedulers (refactored in code)
o Photos & chat files (migrated to S3)

STRV

STRV

PROFILE PHOTOS

1. Change presigned URL endpoints to serve new S3 links
2. Prepare a migration script

Fetch profile photos from DB (4 sizes per photo)
Download file from Azure

Upload file to AWS S3

Update file links in DB & Firebase

WD

Surge ~2TB
Grizzly ~1TB

STRV

LET'S RUN IT!

e Separate Heroku process

e Est. completion time: ~ 8 months (~700 profiles / hour)

STRV

LET'S RUN IT!

e Separate Heroku process

e Est. completion time: ~ 8 months (~700 profiles / hour)
We can do better

e Introduce Node.js cluster (with 3 workers)

o Need to orchestrate data access among workers

STRV

LET'S RUN IT!

e Separate Heroku process

e Est. completion time: ~ 8 months (~700 profiles / hour)

We can do better
e Introduce Node.js cluster (with 3 workers)
o Need to orchestrate data access among workers

e Est. completion time: ~ 1.5 month (~3,900 profiles / hour)

STRV

LET'S RUN IT!

e Separate Heroku process

e Est. completion time: ~ 8 months (~700 profiles / hour)

We can do better
e Introduce Node.js cluster (with 3 workers)
o Need to orchestrate data access among workers

e Est. completion time: ~ 1.5 month (~3,900 profiles / hour)

Can we do even better?
e Move to AWS EC2 (with 6 workers)

STRV

LET'S RUN IT!

e Separate Heroku process

e Est. completion time: ~ 5 months (~700 profiles / hour)

We can do better
e Introduce Node.js cluster (with 3 workers)
o Need to orchestrate data access among workers

e Est. completion time: ~ 1.5 month (~3,900 profiles / hour)
Can we do even better?

e Move to AWS EC2 (with 6 workers)
e Est. completion time: ~ 7 days (~24,000 profiles / hour)

STRV

LET'S RUN IT!

e Separate Heroku process

e Est. completion time: ~ 5 months (~700 profiles / hour)

We can do better
e Introduce Node.js cluster (with 3 workers)
o Need to orchestrate data access among workers

e Est. completion time: ~ 1.5 month (~3,900 profiles / hour)
Can we do even better?

e Move to AWS EC2 (with 6 workers)
e Est. completion time: ~ 7 days (~24,000 profiles / hour)

STRV

CHAT FILES

e Firebase (Realtime database, not Firestore) /- -M4Zpa7GOX6gkapDegWe

e Photos, videos, voice messages SN (L IEEOIS TS0

------- name: "-M4Zpa7G0X6gkapDegWc"
e DB tables _
------- sender_id: 42429

o snaps il sent_date: 1586534703798

© wvideo snaps type: "voice"

O voilce messages

STRV

CHAT FILES

e Firebase (Realtime database, not Firestore) /- -M4Zpa7GOX6gkapDegWe

e Photos, videos, voice messages SN (L IEEOIS TS0

------- name: "-M4Zpa7G0X6gkapDegWc"
e DB tables _
------- sender_id: 42429

o snaps il sent_date: 1586534703798

© wvideo snaps type: "voice"

PR
>~

O vorcemessSages =

STRV

STRV

CHAT FILES

e Firebase (Realtime database, not Firestore)
e Photos, videos, voice messages
e DB tables

O snaps

© video snaps

PR
>~

o vorce—messSages =

' -M4Zpa7G0X6gkapDegWc

duration: 6.48199987411499
name: "-M4Zpa7G0X6gkapDegWc"
sender_id: 42429

sent_date: 1586534703798

type: "voice"

e Iterate through the entire collection msg messages/293-851

13

STRV

const getNextConversation = async conversationKey => {

const result = await app.context.firebase
.ref('msg_messages"')
.orderByKey()
.startAt(conversationKey)
// get 2 conversations, first one to process, second one to get nextConversationKey
. limitToFirst(2)
.once('value')

const conversations = Object.entries(result.val())

14

STRV

\.

SWORKED FINEINA
QIIE\I"

‘ -

OPS PROBLEM NOW

15

STRV

REALITY

e Pagination doesn't work well on large datasets
e Nolazy loading
e Let'sreconsider it!
o Fetch DB for users IDs
o Fetch conversations list from Firebase (msg conversations/user-193

o Iterate through that list and fetch conversation messages

16

STRV

ISSUES & TAKE AWAYS

e Memory usage - Heroku isn’t very generous (512MB/25S$, 1GB/509)

e Handle worker exits & implement re-spawns

e Implement retries or dead-letter queues

e t2.medium 4GB/ ~33$
e Optional VPC endpoint for S3
e pm2 - stores logs by default(!)

4.01G

2.06G

111M

04/28

04/28

04/29

04/29

04/30

04/30

05/01

05/01

05/02

05/02

05/03

[y

05/03

11

ISSUES & TAKE AWAYS

e Use streams

Tﬂ hohy on 17 Mar ®

It would be nicer and maybe a bit faster to transfer the files using node streams (just
pipe read stream from request to upload stream to S3) without storing whole file in
memory... But this works too... ;)

e Limit the number of promises created at once

robertrossmann on 18 Mar ®

This will blow up in a matter of seconds. You need to limit the number of photos being
migrated to a relatively small number, like, 10 or 20 at most. Otherwise it will create
thousands of pending promises and open up thousands of network requests to start
the image download and you will soon run out of memory. §)

STRV 18

PROCESS LOTS OF PROMISES EFFECTIVELY

import chunk from 'lodash.chunk'

export const processInChunks = async (array, handlerFn, { chunkSize =5 } = {}) => {
const result = []
for (const dataChunk of chunk(array, chunkSize)) {
result.push(...await Promise.all(dataChunk.map(handlerFn)))
}

return result

https://qist.qithub.com/jozefcipa

STRV

https://gist.github.com/jozefcipa/

STRV

CHAT TAKE AWAYS

e Keep data that is subject to change easily accessible by either:

o Keeping DB table as an “index” (store all files)

o Keeping only IDs in chat (probably not very efficient)

o Using custom domain URLs so you stay in control (custom CDN domain)
e Use CDN urls (if possible)

e Delete files also from storage, not only from DB

20

@SURGEAPP/PARALLEL-WORKER

e npm package
e Spawns and manages workers
e Orchestrates workers access to a shared resource
e Features
o Restart worker after crashing
o Pick up unprocessed payload

o Local/ distributed lock option

Parallel Worker

Your
business logic

https://qgithub.com/surgeapp/parallel-worker

STRV

Worker 1

Worker 2

Worker 3

Worker 4

Database
Gl
ID (1 - 50)
—
o
ID (51 - 100)
—
G
ID (101 - 150)
—

ID (151 - 200)

) ——

— > time

https://github.com/surgeapp/parallel-worker

const parallelWorker = new ParallelWorker({
redis,

}

//’ paralleWorker.setFetchNext(async (lastId: ID | null) => {
const result = await db('users"')
.where('updated', '=', 0)
.andWhere('id', '>', lastId ?? 0)
.orderBy('id")
. limit(5)

Fetch data from DB < if (result.length === 0) {

return null

return {
lastId: result[result.length - 1].id,
idsRange: result.map((row: any) => row.id),

X

_ 1

parallelWorker.setHandler(async ({ idsRange }: Payload) => {
await db('users')
Process data .whereIn('id', idsRange)

.increment('updated', 1)

STRV h

THANK YOU!

