
MIGRATING DATA
BETWEEN CLOUDS

Jozef Cipa, Backend Engineer at STRV

● Surge - 4.5M+ registered users

● Grizzly - 1M+ registered users

● Runs on Heroku, Postgres & Firebase

● Data originally stored in Azure (expensive 🤑)

● Let’s migrate to AWS

○ Push notifications (moved to Firebase)

○ Schedulers (refactored in code)

○ Photos & chat files (migrated to S3)

QUICK INTRO

2

1. Change presigned URL endpoints to serve new S3 links

2. Prepare a migration script

1. Fetch profile photos from DB (4 sizes per photo)

2. Download file from Azure

3. Upload file to AWS S3

4. Update file links in DB & Firebase

Surge ~2TB

Grizzly ~1TB

PROFILE PHOTOS

3

4

● Separate Heroku process

● Est. completion time: ~ 8 months (~700 profiles / hour)

LET’S RUN IT!

5

● Separate Heroku process

● Est. completion time: ~ 8 months (~700 profiles / hour)

We can do better

● Introduce Node.js cluster (with 3 workers)

○ Need to orchestrate data access among workers

LET’S RUN IT!

6

● Separate Heroku process

● Est. completion time: ~ 8 months (~700 profiles / hour)

We can do better

● Introduce Node.js cluster (with 3 workers)

○ Need to orchestrate data access among workers

● Est. completion time: ~ 1.5 month (~3,900 profiles / hour)

LET’S RUN IT!

7

● Separate Heroku process

● Est. completion time: ~ 8 months (~700 profiles / hour)

We can do better

● Introduce Node.js cluster (with 3 workers)

○ Need to orchestrate data access among workers

● Est. completion time: ~ 1.5 month (~3,900 profiles / hour)

Can we do even better?

● Move to AWS EC2 (with 6 workers)

LET’S RUN IT!

8

● Separate Heroku process

● Est. completion time: ~ 5 months (~700 profiles / hour)

We can do better

● Introduce Node.js cluster (with 3 workers)

○ Need to orchestrate data access among workers

● Est. completion time: ~ 1.5 month (~3,900 profiles / hour)

Can we do even better?

● Move to AWS EC2 (with 6 workers)

● Est. completion time: ~ 7 days (~24,000 profiles / hour)

LET’S RUN IT!

9

● Separate Heroku process

● Est. completion time: ~ 5 months (~700 profiles / hour)

We can do better

● Introduce Node.js cluster (with 3 workers)

○ Need to orchestrate data access among workers

● Est. completion time: ~ 1.5 month (~3,900 profiles / hour)

Can we do even better?

● Move to AWS EC2 (with 6 workers)

● Est. completion time: ~ 7 days (~24,000 profiles / hour)

LET’S RUN IT!

10

● Firebase (Realtime database, not Firestore)

● Photos, videos, voice messages

● DB tables

○ snaps

○ video_snaps

○ voice_messages

CHAT FILES

11

● Firebase (Realtime database, not Firestore)

● Photos, videos, voice messages

● DB tables

○ snaps

○ video_snaps

○ voice_messages ❌😒

CHAT FILES

12

● Firebase (Realtime database, not Firestore)

● Photos, videos, voice messages

● DB tables

○ snaps

○ video_snaps

○ voice_messages ❌😒
● Iterate through the entire collection msg_messages/293-851

CHAT FILES

13

14

15

● Pagination doesn’t work well on large datasets

● No lazy loading

● Let’s reconsider it!

○ Fetch DB for users IDs

○ Fetch conversations list from Firebase (msg_conversations/user-193)

○ Iterate through that list and fetch conversation messages

REALITY

16

● Memory usage - Heroku isn’t very generous (512MB/25$, 1GB/50$)

● Handle worker exits & implement re-spawns

● Implement retries or dead-letter queues

AWS

● t2.medium 4GB / ~33$

● Optional VPC endpoint for S3

● pm2 - stores logs by default(!)

ISSUES & TAKE AWAYS

17

● Use streams

● Limit the number of promises created at once

ISSUES & TAKE AWAYS

18

19

https://gist.github.com/jozefcipa

PROCESS LOTS OF PROMISES EFFECTIVELY

https://gist.github.com/jozefcipa/

● Keep data that is subject to change easily accessible by either:

○ Keeping DB table as an “index” (store all files)

○ Keeping only IDs in chat (probably not very efficient)

○ Using custom domain URLs so you stay in control (custom CDN domain)

● Use CDN urls (if possible)

● Delete files also from storage, not only from DB

CHAT TAKE AWAYS

20

● npm package

● Spawns and manages workers

● Orchestrates workers access to a shared resource

● Features

○ Restart worker after crashing

○ Pick up unprocessed payload

○ Local / distributed lock option

@SURGEAPP/PARALLEL-WORKER

21

https://github.com/surgeapp/parallel-worker

https://github.com/surgeapp/parallel-worker

22

Fetch data from DB

Process data

THANK YOU!
Jozef Cipa / jozef.cipa@strv.com

23

