LOAD TESTING



STRV

WHAT IS LOAD TESTING?

Generate artificial load against your backend / frontend
Measure how the systems operates and reveal potential bottlenecks before releasing

° Smoke testing
o Verify that your system can handle minimal load, without any problems

° Load testing
o How the system behaves under high, above-normal conditions

SMOKE TESTING

LOAD TESTING
(FOR PERFORMANCE)

STRESS TESTING

SOAK/ENDURANCE
TESTING

SPIKE TESTING

o In this case, it is important that the system still responds to all requests but the response time might no longer be the focus

o e.g. When 1000 users call the API within 30s seconds, the average response time should be below 1000 ms and no errors

should occur

e  Stress testing

o How the system behaves under extreme conditions, way above what should happen in normal scenarios

o Essentially we are trying to find out the breaking point

e  Soak testing

o  Assess reliability and performance of your system over an extended period of time (e.g. 2-3 hours)

o Detect memory leaks or issues that appear after some time




TESTING TOOL

e  Open-source tool k6 (k6.i0) - "This is how load testing should look in the 21st century.”

. Written in Go, scripting in Javascript
=> No Node.js though, instead uses goja - JS interpreter written in Go

=> File imports don’t work (need to use webpack or other bundler)

=> Node.js / Browser API not supported - e.g. window object, modules like fs, os, crypto, no EventLoop
=> Provides custom utils like open (file), http.get (url)

=> https://k6.io/docs/using-k6/javascript-compatibility-mode/

=> Very efficient and powerful ( f‘@")

° Many integrations (Grafana, InfluxDB, Cloudwatch, etc.)
° Easy to use

e  Great documentation

° k6 cloud

e  Alot of examples to get you started https://k6.io/docs/examples/

STRV


https://k6.io
https://github.com/dop251/goja
https://k6.io/docs/using-k6/javascript-compatibility-mode/
https://k6.io/docs/examples/

TESTING TOOL

e  Virtual Users (VUs)

o essentially parallel while (true) loops

o Execute code repeatedly while the test is running
° Metrics and thresholds to define testing criteria

export function setup() {

}

export default function (data) {

}

export function teardown(data) {

}

STRV



METRICS & THRESHOLDS

° Measure how a system performs under test conditions
o  Counters - Sum values, e.g. number of requests
o Gauges - Stores min, max and latest values, e.g. API response content size
o Rates - Tracks % of non-zero values, e.g. % of failed requests
o Trends - Calculates statistics (min, max, average, percentiles), e.g. API response time
° Built-in metrics
o e.g. http req duration(trend), iterations(counter), http req failed(rate), ...
Possible to define and track custom metrics
Thresholds allow to define pass/fail criteria for the metrics

STRV



STRV

TESTING SCENARIOS & MODELING THE WORKLOAD

° Scenarios allow to model different traffic patterns, thus simulate real traffic better
° Multiple scenarios can exist and may be executed in parallel or sequentially
° Executors are the workhorses of k6

o Schedule VUs and iterations

o Configured in the options object

Shared iterations - A fixed amount of iterations are "shared" between a number of VUs.

Per VU iterations - Each VU executes an exact number of iterations.

Constant VUs - A fixed number of VUs execute as many iterations as possible for a specified amount of time
Ramping VUs - A variable number of VUs execute as many iterations as possible for a specified amount of time
Constant Arrival Rate - A fixed number of iterations are executed in a specified period of time.

Ramping Arrival Rate - A variable number of iterations are executed in a specified period of time.

https://k6.io/docs/using-k6/scenarios/executors/



https://k6.io/docs/using-k6/scenarios/executors/
https://k6.io/docs/testing-guides/api-load-testing/#model-the-workload
https://k6.io/docs/using-k6/scenarios/executors

LARGE-SCALE TESTS

k6 uses all CPU cores and manages memory very efficiently

No need for distributed tests execution in most cases

Single machine is often enough to generate 30-40k VVUs (~300k requests per second)

With some OS fine-tuning you can get even better results

Don’t forget to monitor the load generator server (memory, cpu, network)

Simple tests will use ~1-5MB per VU

SharedArray- share data between VUs (processes), otherwise each VU has its own copy in memory
discardResponseBodiesoption, to avoid storing API responses in memory

If distributed tests are needed, you can use execution segment, k6 cloud or the kubernetes operator

Be aware of data transfer costs in AWS!

AWS k6 Benchmark

https://k6.io/docs/testing-quides/running-large-tests/

https://k6.io/blog/comparing-best-open-source-load-testing-tools/

STRV


https://k6.io/docs/misc/fine-tuning-os/
https://k6.io/docs/testing-guides/running-large-tests/
https://k6.io/docs/testing-guides/running-large-tests/#benchmarking-k6-on-aws
https://k6.io/docs/testing-guides/running-large-tests/
https://k6.io/blog/comparing-best-open-source-load-testing-tools/

API PREREQUISITES

° Improve application logging
o Generate requestId and attach it to all logs (using async hooks)
o Return requestId (correlationId)in error responses
o Log request bodies (only for failed requests to avoid bloating log stream, don’t forget about redacting sensitive data)
Enable Performance Insights on RDS
Configure reporting (e.g. Cloudwatch alarms)
o APl & Lambda error logs
o APl CPU & memory utilization
o  SQS messages age
o Redis memory utilization
o ELB slow requests
Install some tracing software (e.g. Sentry)
Fix existing reported (known) issues first

https://k6.io/docs/testing-quides/api-load-testing/

STRV


https://nodejs.org/api/async_hooks.html
https://aws.amazon.com/rds/performance-insights/
https://k6.io/docs/testing-guides/api-load-testing/

RUNNER EC2

° Run tests against an environment that is the most similar to production (usually staging, or create production replica for testing)
° Prepare an EC2 instance in AWS
o Install k6
o  Configure AWS Cloudwatch Agent
[ Send k6 logs and metrics (CPU, RAM, k6 metrics - VUs, delays, failures ...) to Cloudwatch
[ Beware of AWS custom metrics pricing - 0.30$ / metric / month (k6 generated almost 90 metrics just in few seconds)
eventually we decided not to use it
o Run tests
° Note: k6 might generate a lot of traffic which may increase the bill for data transfer !!!

STRV



STRV

TEST RESULTS & LESSONS LEARNED

Load balancers are not magical, they need to scale out as well (warm up)

OpenSearch might be a bottleneck - do your research and configure it properly (scaling might be necessary too)
Fargate scaling takes time (scaling events in AWS) - set scaling thresholds appropriately

Use caching (don’t forget to invalidate, set proper keys to not return incorrect data)

Look out for inefficient database queries (e.g. N+1 problem) - Sentry can help here

Learned how to run load tests using k6

10



QUESTIONS?



THANK YOU!



