
LOAD TESTING
Jozef Cipa, Backend Developer at STRV

● Generate artificial load against your backend / frontend
● Measure how the systems operates and reveal potential bottlenecks before releasing

● Smoke testing
○ Verify that your system can handle minimal load, without any problems

● Load testing
○ How the system behaves under high, above-normal conditions
○ In this case, it is important that the system still responds to all requests but the response time might no longer be the focus
○ e.g. When 1000 users call the API within 30s seconds, the average response time should be below 1000 ms and no errors

should occur

● Stress testing
○ How the system behaves under extreme conditions, way above what should happen in normal scenarios
○ Essentially we are trying to find out the breaking point

● Soak testing
○ Assess reliability and performance of your system over an extended period of time (e.g. 2-3 hours)
○ Detect memory leaks or issues that appear after some time

WHAT IS LOAD TESTING?

2

● Open-source tool k6 (k6.io) - "This is how load testing should look in the 21st century."

● Written in Go, scripting in Javascript
 => No Node.js though, instead uses goja - JS interpreter written in Go

 => File imports don’t work (need to use webpack or other bundler)

 => Node.js / Browser API not supported - e.g. window object, modules like fs, os, crypto, no EventLoop

 => Provides custom utils like open(file), http.get(url)

 => https://k6.io/docs/using-k6/javascript-compatibility-mode/

 => Very efficient and powerful ()

● Many integrations (Grafana, InfluxDB, Cloudwatch, etc.)

● Easy to use

● Great documentation

● k6 cloud

● A lot of examples to get you started https://k6.io/docs/examples/

TESTING TOOL

3

https://k6.io
https://github.com/dop251/goja
https://k6.io/docs/using-k6/javascript-compatibility-mode/
https://k6.io/docs/examples/

● Virtual Users (VUs)
○ essentially parallel while(true) loops
○ Execute code repeatedly while the test is running

● Metrics and thresholds to define testing criteria

TESTING TOOL

4

● Measure how a system performs under test conditions
○ Counters - Sum values, e.g. number of requests
○ Gauges - Stores min, max and latest values, e.g. API response content size
○ Rates - Tracks % of non-zero values, e.g. % of failed requests
○ Trends - Calculates statistics (min, max, average, percentiles), e.g. API response time

● Built-in metrics
○ e.g. http_req_duration (trend), iterations (counter), http_req_failed (rate), …

● Possible to define and track custom metrics
● Thresholds allow to define pass/fail criteria for the metrics

METRICS & THRESHOLDS

5

● Scenarios allow to model different traffic patterns, thus simulate real traffic better
● Multiple scenarios can exist and may be executed in parallel or sequentially
● Executors are the workhorses of k6

○ Schedule VUs and iterations
○ Configured in the options object

Shared iterations - A fixed amount of iterations are "shared" between a number of VUs.

Per VU iterations - Each VU executes an exact number of iterations.

Constant VUs - A fixed number of VUs execute as many iterations as possible for a specified amount of time

Ramping VUs - A variable number of VUs execute as many iterations as possible for a specified amount of time

Constant Arrival Rate - A fixed number of iterations are executed in a specified period of time.

Ramping Arrival Rate - A variable number of iterations are executed in a specified period of time.

https://k6.io/docs/using-k6/scenarios/executors/

● ramping VUs
○ constant arrival rate
○ ramping arrival rate

https://k6.io/docs/testing-guides/api-load-testing/#model-the-workload

https://k6.io/docs/using-k6/scenarios/executors
ramping VUs

● how many VUs at the given time
● define stages

● number of VUs
● time period

● the iterations are ran in a loop for each VU while the stage time period is fullfilled

constant arrival rate

● define how many iterations each second
● for how long
● define min and max VUs, k6 chooses the number dynamically to support the load

ramping arrival rate

● define how many iterations at the given time
● define stages

● number of iterations
● time period

● define min and max VUs, k6 chooses the number dynamically to support the load

TESTING SCENARIOS & MODELING THE WORKLOAD

6

https://k6.io/docs/using-k6/scenarios/executors/
https://k6.io/docs/testing-guides/api-load-testing/#model-the-workload
https://k6.io/docs/using-k6/scenarios/executors

● k6 uses all CPU cores and manages memory very efficiently
● No need for distributed tests execution in most cases
● Single machine is often enough to generate 30-40k VUs (~300k requests per second)
● With some OS fine-tuning you can get even better results
● Don’t forget to monitor the load generator server (memory, cpu, network)
● Simple tests will use ~1-5MB per VU
● SharedArray - share data between VUs (processes), otherwise each VU has its own copy in memory
● discardResponseBodies option, to avoid storing API responses in memory
● If distributed tests are needed, you can use execution segment, k6 cloud or the kubernetes operator

Be aware of data transfer costs in AWS!

AWS k6 Benchmark

https://k6.io/docs/testing-guides/running-large-tests/

https://k6.io/blog/comparing-best-open-source-load-testing-tools/

LARGE-SCALE TESTS

7

https://k6.io/docs/misc/fine-tuning-os/
https://k6.io/docs/testing-guides/running-large-tests/
https://k6.io/docs/testing-guides/running-large-tests/#benchmarking-k6-on-aws
https://k6.io/docs/testing-guides/running-large-tests/
https://k6.io/blog/comparing-best-open-source-load-testing-tools/

● Improve application logging
○ Generate requestId and attach it to all logs (using async hooks)
○ Return requestId (correlationId) in error responses
○ Log request bodies (only for failed requests to avoid bloating log stream, don’t forget about redacting sensitive data)

● Enable Performance Insights on RDS
● Configure reporting (e.g. Cloudwatch alarms)

○ API & Lambda error logs
○ API CPU & memory utilization
○ SQS messages age
○ Redis memory utilization
○ ELB slow requests

● Install some tracing software (e.g. Sentry)
● Fix existing reported (known) issues first

https://k6.io/docs/testing-guides/api-load-testing/

API PREREQUISITES

8

https://nodejs.org/api/async_hooks.html
https://aws.amazon.com/rds/performance-insights/
https://k6.io/docs/testing-guides/api-load-testing/

● Run tests against an environment that is the most similar to production (usually staging, or create production replica for testing)
● Prepare an EC2 instance in AWS

○ Install k6
○ Configure AWS Cloudwatch Agent

■ Send k6 logs and metrics (CPU, RAM, k6 metrics - VUs, delays, failures ...) to Cloudwatch
■ Beware of AWS custom metrics pricing - 0.30$ / metric / month (k6 generated almost 90 metrics just in few seconds)

eventually we decided not to use it
○ Run tests

● Note: k6 might generate a lot of traffic which may increase the bill for data transfer !!!

RUNNER EC2

9

● Load balancers are not magical, they need to scale out as well (warm up)
● OpenSearch might be a bottleneck - do your research and configure it properly (scaling might be necessary too)
● Fargate scaling takes time (scaling events in AWS) - set scaling thresholds appropriately
● Use caching (don’t forget to invalidate, set proper keys to not return incorrect data)
● Look out for inefficient database queries (e.g. N+1 problem) - Sentry can help here
● Learned how to run load tests using k6

TEST RESULTS & LESSONS LEARNED

10

QUESTIONS?

11

THANK YOU!
Jozef Cipa / jozef.cipa@strv.com

12

